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We investigate, analytically near the dimension duc=4 and numerically in d=3, the nonequilibrium relax-
ational dynamics of the randomly diluted Ising model at criticality. Using the exact renormalization-group
method to one loop, we compute the two times t , tw correlation function and fluctuation dissipation ratio �FDR�
for any Fourier mode of the order parameter, of finite wave vector q. In the large time separation limit, the FDR
is found to reach a nontrivial value X� independently of �small� q and coincide with the FDR associated to the
total magnetization obtained previously. Explicit calculations in real space show that the FDR associated to the
local magnetization converges, in the asymptotic limit, to this same value X�. Through a Monte Carlo simu-
lation, we compute the autocorrelation function in three dimensions, for different values of the dilution fraction
p at Tc�p�. Taking properly into account the corrections to scaling, we find, according to the renormalization-
group predictions, that the autocorrelation exponent �c is independent of p. The analysis is complemented by
a study of the nonequilibrium critical dynamics following a quench from a completely ordered state.
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The study of relaxational dynamics following a quench at
a pure critical point has attracted much attention in the past
few years �1–4�. Although simpler to study than glasses,
critical dynamics display interesting nonequilibrium features
such as aging, commonly observed in more complex disor-
dered or glassy phases �5�. In this context, the computation
of two times t , tw response and correlation functions with
associated universal exponents has been the subject of nu-
merous analytical as well as numerical studies �4�.

In addition, it has been proposed �6� that a nontrivial fluc-
tuation dissipation ratio �FDR� X, originally introduced in the
mean-field approach to glassy systems, which generalizes the
fluctuation dissipation theorem �FDT� to nonequilibrium
situations, is a new universal quantity associated with these
critical points. As such, it has been computed using the pow-
erful tools of renormalization group �RG�, e.g., for pure
O�N� model at criticality in the vicinity of the upper critical
dimension duc=4 and for various dynamics �4,7,8�.

An important question related to the physical interpreta-
tion of X in terms of an effective temperature �9� Teff=T /X is
its dependence on the observables �10,11�. In this respect, a
heuristic argument �7� suggests that, for a wide class of criti-
cal systems, the local FDR associated with correlation and
corresponding response of the local magnetization should be
identical, in the large-time separation limit, to the FDR for
the total magnetization, i.e., for the Fourier mode q=0. This
argument relies strongly on the hypothesis that the time de-
cay of the response function of the Fourier mode q is char-
acterized by a single time scale �q�q−z, with z the dynami-
cal exponent.

Characterizing the effects of quenched disorder on critical
dynamics is a complicated task, and indeed the question of
how quenched randomness modifies these properties has
been much less studied. In particular, in this context of criti-
cal disordered systems, the question of universality, i.e., the
dependence of the critical exponents on the strength of the
disorder, is a controversial issue �12�. In this paper, we ad-
dress these questions on the randomly diluted Ising model,

H = �
�ij�

�i� jsisj , �1�

where si are Ising spins on a d-dimensional hypercubic lat-
tice and �i=1 with probability p and 0 with probability 1
− p. For the experimentally relevant case of dimension d=3
�13�, for which the specific-heat exponent of the pure model
is positive, the disorder is expected, according to Harris cri-
terion �14�, to modify the universality class of the transition.
For 1− p�1, the large-scale properties of Eq. �1� at critical-
ity are then described by the following O�1� model with a
random mass term, the so-called random Ising model �RIM�:

H���� =	 ddx
1

2
����2 +

1

2
�r0 + ��x���2 +

g0

4!
�4� , �2�

where ����x� and ��x� is a Gaussian random variable
��x���x��=	
d�x−x��, and r0, the bare mass, is adjusted so
that the renormalized one is zero. The static critical proper-
ties of this model have been intensively studied �15� both
analytically, mainly using RG, within various schemes, and
numerically �16�. The �perturbative� RG calculations below
the upper critical dimension in d=4−�, which we will focus
on here, confirm the qualitative Harris criterion and predict
that the critical properties of these models �2� for different
values of p close to 1 are described by a new disordered
fixed point, which is independent of p. Therefore, an impor-
tant statement of this RG analysis is that the critical expo-
nents, which can be computed in an expansion of �, e.g.,
�=O���, are universal, i.e., independent of p. This was re-
cently confirmed by Monte Carlo simulation in d=3 �16�,
over a wide range of concentration p above the percolation
threshold pc=0.31. Although quantitative discrepancies were
found with perturbative RG calculations �17�, universality
was demonstrated by taking carefully into account the
�strong� corrections to scaling �16�. In the equilibrium dy-
namics, at variance with the pure case, the perturbative ex-
pansion of the dynamical exponent z differs from its high-
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temperature value of 2 already at one loop �18� z−2
=�6� /53�+O��� independently of p, corrections to two
loops have been computed in Ref. �19�, and up to three loops
in Ref. �20�. After a long debate, a recent numerical simula-
tion �21� where corrections to �dynamical� scaling were
taken into account has confirmed the universality of z in d
=3, leading to z=2.62�7� independently of the spin concen-
tration p above pc.

By contrast, much less is known about the nonequilibrium
dynamics of this disordered system at criticality. The critical
initial slip exponent � vanishes to one loop �22�, and cor-
rection to two loops have been computed �23�. This exponent
has been recently computed up to two loops for the case of
extended defects in �24�. The two times response in Fourier
space, Rttw

q �22�, and the correlation Cttw
q=0 �25�, including the

associated scaling functions, are known up to one loop. But
although the dynamical RG predicts a universal value of the
autocorrelation exponent �c=d−z�, for p close to 1, this
statement remains an open question for a wider range of
values of p. Furthermore, a nontrivial FDR �25�, only for the
total magnetization, was recently obtained to one loop, and it
was argued, using the same aforementioned heuristic argu-
ment �7�, to coincide with the local FDR. However, it was
already noticed in Ref. �22� that, due to the disorder, Rttw

q

decays as a power law for qzt�1. Therefore, the argument of
Ref. �7� is challenged for this disordered critical point, and,
already at one-loop order, the computation of the FDR needs
a closer inspection, including an extension of the analysis of
Ref. �25� beyond the “diffusive” q=0 mode.

In this paper, using RG to one loop, we obtain, for any
finite Fourier mode q, the correlation function Cttw

q and the
FDR Xttw

q , which are both characterized by scaling functions
of the variables qz�t− tw� and t / tw. In the asymptotic large
time separation regime t� tw, the FDR reaches a nontrivial
value X�, independently of �small� q. In addition, we explic-
itly compute the local FDR, which is a function of t / tw and
reaches the same nontrivial limit X� when t� tw, which thus
establishes on firmer grounds the heuristic argument of Ref.
�7� for the present disordered case. Besides, we perform a
Monte Carlo simulation of the nonequilibrium relaxation of
Eq. �1� following a quench from high temperature with ini-
tial magnetization m0=0 at Tc�p� and compute the autocor-
relation function. In the asymptotic regime, it takes a scaling
form compatible with the RG calculations. By taking into
account corrections to scaling, we show that the exponent �c
is independent of p. Finally, we compute numerically the
autocorrelation function for the critical dynamics following a
quench for a completely ordered initial condition with m0
=1. We observe that the system is also aging and show that
the decaying exponent �c is strongly affected by this initial
condition.

We study the relaxational dynamics of the randomly di-
luted Ising model in dimension d=4−� described by a
Langevin equation,

�
�

�t
��x,t� = −


H����

��x,t�

+ ��x,t� , �3�

where ���x , t��=0 and ���x , t���x� , t���=2�T
�x−x��
�t− t��
is the thermal noise and � the friction coefficient. At initial

time ti=0, the system is in a random initial configuration
with zero magnetization m0=0 distributed according to a
Gaussian with short-range correlations,

���x, ṫ = 0���x�,t = 0��i = �0
−1
d�x − x�� . �4�

Notice that it has been shown that �0
−1 is irrelevant here �in

the RG sense� in the large time regime studied here �26�. We
will focus on the correlation Cttw

q in Fourier space and the
autocorrelation Cttw

,

Cttw
q = ���q,t���− q,tw��, Cttw

= ���x,t���x,tw�� �5�

and the response Rttw
q to a small external field f�−q , tw� as

well as on the local response function Rttw
respectively de-

fined, for t� tw, as

Rttw
q =


���q,t��

f�− q,tw�

, Rttw
=


���x,t��

f�x,tw�

, �6�

where .. and �· · � denote, respectively, averages with respect
to disorder and thermal fluctuations. We focus also on the
FDR Xttw

q associated to the observable � �5�,

1

Xttw
q =

�tw
Cttw

q

TRttw
q �7�

defined such that Xttw
q =1 at equilibrium. Notice also that for

this choice of initial conditions �4�, connected and noncon-
nected correlations do coincide for large system size.

A convenient way to study the Langevin dynamics de-
fined by Eq. �3� is to use the Martin-Siggia-Rose generating
functional. Using the Ito prescription, it can be readily aver-
aged over the disorder. The correlations �5� and response �6�
are then obtained from a dynamical �disorder-averaged� gen-
erating functional or, equivalently, as functional derivatives
of the corresponding dynamical effective action �. This func-
tional can be perturbatively computed �27� using the exact
RG equation associated with the multilocal operators expan-
sion introduced in �28,29�. It allows us to handle arbitrary
cutoff functions c�q2 /2�0

2� and check universality, indepen-
dence with respect to c�x�, and the ultraviolet scale �0. It
describes the evolution of � when an additional infrared cut-
off �l is lowered from �0 to its final value �l→0, where a
fixed point of order O��� is reached. In this limit, one ob-
tains Rttw

q and Cttw
q �for t� tw� from

�tRttw
q + �q2 + ��t��Rttw

q + 	
ti

t

dt1�tt1
Rt1tw

q = 0, �8�

Cttw
q = 2T	

ti

tw

dt1Rtt1
q Rtwt1

q + 	
ti

t

dt1	
ti

tw

dt2Rtt1
q Dt1t2

Rtwt2
q

�9�

with ��t�=−�ti
t dt1�tt1

and where the self-energy �t1t2
and the

noise-disorder kernel Dt1t2
are directly obtained from � at the

fixed point. One finds
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�tt� = −
1

2
6�

53
	

a

��a�t − t���2, �10�

Dtt� =
Tc

2
6�

53
	

a

��a�t − t�� − �a�t + t��� , �11�

where �a�x�= �x+a / �2�0
2��−1. For concrete calculations, we

have used the decomposition of the cutoff function c�x�
=�daĉ�a�e−ax��ae−ax.

The computation of the correlation function Cttw
q requires

the knowledge of the response, which we first focus on. By
solving perturbatively to order O��� the differential equa-
tion �8�, similarly to what is done in Ref. �27�, one recovers,
in the limit q /�0�1 keeping the scaling variables v=qz�t
− tw� and u= t / tw fixed, the solution obtained in Ref. �22�,
consistent with the scaling form

Rttw
q = q−2+z+�� t

tw
�

FR„q
z�t − tw�,t/tw… , �12�

where = 1
2
�6� /53�+O��� and the universal �30� scaling

function FR�v ,u� admits also an expansion in powers of �

with �22� FR�v ,u��FR
eq�v�=e−v+ 1

2
6� /53��v−1�Ei�v�e−v

+e−v−1�, where Ei�v� is the exponential integral function. At
variance with the pure model at one loop �7�, the large-v
behavior of FR

eq�v� is a power law, FR�v��v−2, which already
indicates that the heuristic argument of Ref. �7� cannot be
applied here. Besides, when computing the local response
Rttw

, one is left with an integral over momentum which is
logarithmically divergent, indicating that this integral has to
be handled with care to obtain the correct result, as the scal-
ing form in Eq. �12� is valid only for q /�0�1. We thus
solve perturbatively Eq. �8� for any fixed q and obtain an
expression for Rttw

q consistent with the scaling form,

Rttw
q = g̃1�q�� t

tw
�

FR„g̃2�q�q2�t − tw�,t/tw… , �13�

where g̃1�q� , g̃2�q� are nonuniversal functions, i.e., which
depend explicitly on the cutoff function c�x� and �0, with the
universal �30� small-q behavior,

g̃1�q� � qz−2+�, g̃2�q� � qz−2, �14�

which thus allows us to recover the previous expression in
the asymptotic limit q /�0�1 �12�. By computing the Fou-
rier transform of Rttw

q as given in Eq. �13�, we explicitly
check that the local response Rttw

is consistent with the scal-
ing form,

Rttw
=

Kd

2

AR
0 + AR

1 ln�t − tw�
�t − tw�1+�d−2+��/z � t

tw
�

�15�

with Kd=Sd / �2��d and where the nonuniversality is left in
the amplitudes AR

0 and AR
1 ,

AR
0 = 1 −

3

2
6�

53
+ �R, AR

1 =
1

2
6�

53
, �16�

�R =6�

53
	

a

ln�2�0
2

a
� .

At the order of our calculations O���, although z�2, this
scaling form �15� is compatible with local scale invariance
arguments �31�. Notice also that, at this order, the scaling
form obtained for Rttw

could be written as

Rttw
=

Kd

2
AR

1

�t − tw��1+a�� t

tw
�

�17�

with a� �d−2+�� /z. Although this scaling form �17� cannot
be ruled out at this stage, which would in principle require a
two-loop calculation, it seems rather unlikely given the scal-
ing form obtained in Fourier space �12�, where instead a
logarithmic correction as in Eq. �15� is suggested by the
large argument behavior of the function FR

eq�v�.
We now turn to the computation of the correlation func-

tion in Fourier space Cttw
q , which was only computed for the

q=0 mode �25�. Solving Eq. �9�, one obtains an explicit
expression, which, in the aforementioned scaling limit, is
compatible with the scaling form,

Cttw
q = Tcq

−2+�� t

tw
�

FC„q
z�t − tw�,t/tw… �18�

with the full expression

FC�v,u� = FC
0 �v,u� + �FC

1 �v,u� + O��� , �19�

FC
0 �v,u� = e−v − e−v��u+1�/�u−1��,

FC
1 �v,u� = FC

1eq�v� − FC
1eq�v

u + 1

u − 1
� + 6

53
e−v��u+1�/�u−1��

�
Ei� 2v
u − 1

� − ln� 2v
u − 1

� − �E� , �20�

FC
1eq�v� =

1

2
 6

53
�e−v + ve−vEi�v�� , �21�

where �E is the Euler constant. In the limit q→0, our full
expression �19� gives back the result of Ref. �25�. In the
large time separation limit u�1, keeping v fixed, one ob-
tains the result

FC�v,u� =
1

u
FC,��v� + O�u−2� , �22�

FC��v� = AC�vFR
eq�v�, AC� = 2 + 26�

53
. �23�

This O�u−1� decay in Eq. �22� is expected from RG argu-
ments, and has been explicitly checked for different pure
critical systems �4�. However, this relation �23� is a priori
nontrivial and cannot be obtained from general arguments.
This identity was also found for the pure O�N� model at
criticality to one-loop order �7� as well as in the glass phase
of the sine-Gordon model with random phase shifts �32�, and
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it would be interesting to investigate whether such a behavior
�23� can be obtained from more general arguments.

The full expression for Cttw
q �19� also allows us to compute

the structure factor Ctt
q. It is obtained from Eq. �19� in the

limit v→0, u→1 keeping v / �u−1�=qzt fixed, and we check
that one recovers the previous result obtained in Ref. �22�.
Thus, one explicitly checks, at order O���, that the dynami-
cal exponent z associated with dynamical equilibrium fluc-
tuations is the same as the one associated with nonequilib-
rium relaxation.

As noticed previously for the response function, the large-
v behavior of FC�v ,u� is a power law FC�v ,u��v−1. There-
fore, given the scaling form �18�, the computation of the
autocorrelation Cttw

has to be done carefully. Just as for the
response, we thus compute the correlation function Cttw

q from
Eq. �9� for any fixed q and then perform the Fourier trans-
formation. One obtains the scaling form

Cttw
= Kd

AC
0 + AC

1 ln�t − tw�
�t − tw��d−2+��/z � t

tw
�

F�t/tw� �24�

with

AC
0 = 1 −

1

2
6�

53
+ �R, AC

1 =
1

2
6�

53
,

F�u� =
1

1 + u
+ O��� . �25�

The same remarks, concerning the response, made before Eq.
�17� also hold here for the autocorrelation.

We now turn to the FDR, first in Fourier space. Given the
scaling forms for the response Rttw

q �12� and for the correla-
tion Cttw

q �18� that we have explicitly checked here, the FDR
Xttw

q takes the simple scaling form in the regime q /�0�1,

�Xttw
q �−1 = FX„q

z�t − tw�,t/tw… . �26�

We have obtained the complete expression for the scaling
function FX�v ,u�, which at variance with the pure O�N�
model at criticality is a function of both qzt and qzt�. In the
large time separation limit u�1, keeping v fixed, one ob-
tains, as a consequence of Eq. �23�,

lim
u→�

�Xttw
q �−1 = 2 +6�

53
+ O��� , �27�

independently of v, i.e., of �small� wave vector q, which
coincides of course with the asymptotic value for the q=0
mode obtained in Ref. �25�. We can check easily, using the
result of Ref. �7�, that this property, independent of v on the
asymptotic limit, holds also for the pure model at one loop,
and it was also found in the glass phase of the sine-Gordon
model with random phase shifts �32�.

As we saw previously, the large-v power-law behavior of
the scaling function FR

eq�v� prevents us from using the argu-
ment of Ref. �7� for the present case. Therefore, one com-
putes directly the FDR for the local correlation and associ-
ated response Xttw

x=0. It is also characterized by a scaling
function of t / tw, which can be simply written as

�Xttw
x=0�−1 = FX�t/tw� , �28�

FX�u� = 2
u2 + 1

�u + 1�2 +6�

53
�u − 1

u + 1
�2

+ O��� , �29�

where FX�u� is a monotonic increasing function of u. It in-
terpolates between 1, in the quasiequilibrium regime for u
→1, and its asymptotic value for u→� given by

lim
t/tw→�

�Xttw
x=0�−1 = lim

t/tw→�
�Xttw

q=0�−1 = 2 +6�

53
+ O��� ,

�30�

which shows explicitly, at order O���, that the asymptotic
FDR for both the total and the local magnetization are indeed
in the same.

Let us next present results from our Monte Carlo simula-
tions of the relaxational dynamics of the randomly diluted
Ising model �1� in dimension d=3, which were done on L
�L�L cubic lattices with periodic boundary conditions. We
first focus on the following situation where the system is
initially prepared in a random initial configuration with zero
magnetization m0=0. At each time step, the L3 sites are then
sequentially updated: for each site i, the move si→−si is
accepted or rejected according to METROPOLIS rule. If one
gradually decreases p, the fraction of magnetic sites will be
reached below which the system no longer exhibits a transi-
tion to ferromagnetic order at any finite temperature. This
happens at the percolation threshold, for which Tc�pc�=0
�12,16�. For different values of p� pc, we compute the spin-
spin autocorrelation function defined as

Cttw
=

1

L3�
i

�si�t�si�tw�� . �31�

In the following, we will also be interested in the connected

correlation function C̃�t , tw� defined as

C̃�t,tw� =
1

L3�
i

�si�t�si�tw�� − �si�t���si�tw�� . �32�

In order to obtain better statistics, Cttw
�or C̃�t , tw�� is aver-

aged over a suitably chosen time window 	t around t, with
	t� t. All our data are obtained for a lattice linear size L
=100, as an average over 500 independent initial conditions
and disorder configurations. We also produced data �not
shown here� for the spatial correlation function, for the same
system size, to ensure that our results are not influenced by
finite-size effects.

Figure 1 shows the autocorrelation function Cttw
as a func-

tion of t− tw for different values of the waiting time tw
=24 ,25 ,26 ,27, and 28 at p=0.8. One observes a clear depen-
dence on tw, which indicates a nonequilibrium dynamical
regime. We have also checked that for this choice of initial

conditions, C�t , tw� and C̃�t , tw� do coincide. The scaling
form obtained from the RG analysis �24� suggests, discard-
ing the logarithmic correction, to plot tw

�1+��/zCttw
as a func-

tion of t / tw. Taking the values �=0.0374 from Ref. �16� and
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z=2.62 from Ref. �21�, we see in the inset of Fig. 1 that, for
p=0.8, one obtains a good collapse of the curves for differ-
ent tw. Notice that such scaling forms are also obtained in
more complicated disordered systems like three-dimensional
spin glasses �33�.

However, for different values of p, the best collapse, un-
der this form �24�, would be obtained for a p-dependent ex-
ponent �1+�� /z. Thus one would conclude that this expo-
nent is nonuniversal �12�. Nevertheless, it is known �21� that
such p dependence occurs due to corrections to scaling.
Therefore, to include them, we extend the scaling form �24�
as

Cttw
=

1

�t − tw��1+��/z � �F̃p�t/tw� −
D�p�

�t − tw�bG̃p�t/tw��
�33�

with b=�d /z, where �d corresponds to the biggest irrelevant
eigenvalue of the RG in the dynamics, which is a priori
different from the leading corrections in the statics �21�. Un-
fortunately, we do not have any information on the function

G̃p�x�. We will thus propose the simplest hypothesis G̃p�x�
= F̃p�x�. In Fig. 2, we show a plot of tw

�1+��/zCttw
/ f�t− tw�, with

f�x�=1−D�p�x−b : this results in a reasonably good data col-
lapse of the curves for different tw, for p=0.5, 0.6, 0.65, and
0.8. For each value of p, this data collapse is obtained via the
fitting of three parameters: the exponents b , z and the ampli-
tude D�p�. We found a quite stable value of the exponents
z=2.6±0.1 and b=0.23±0.02, which are both independent of
p. Our value of z, together with �d=0.61±0.06, is consistent
with the value obtained by Parisi et al. �21�. All the p depen-
dence is thus contained in the nonuniversal amplitude D�p�,
as shown in the inset of Fig. 2. According to our data, the
corrections to scaling in the quasiequilibrium regime vanish
for p=0.8, i.e., D�p=0.8��0, in agreement with a previous
numerical computation of the equilibrium autocorrelation
function �12�. Notice that this value p=0.8 is also known
�16�, in the statics, to minimize the corrections to scaling.

As shown on the log-log plot in Fig. 2, and consistently

with the RG prediction �24�, F̃p�t / tw� �33� decays as a power
law for t� tw. However, this plot in Fig. 2 would suggest that
the decaying exponent depends, namely decreases, with p.
We expect instead that this p dependence is again due to
corrections to scaling �21�. Consistently with the corrections
we introduced in the quasiequilibrium part of Cttw

in Eq.
�33�, we propose the form

F̃p�x� = A�p�x�1+�−�c�/z�1 + B�p�x−b� , �34�

where we �reasonably� assume that the dynamical correc-
tions to scaling are characterized by the same,
p-independent, exponent b=0.23±0.02 as obtained previ-
ously �33�. Therefore, for each value of p one has three pa-
rameters to fit: the exponent �c /z and the amplitudes
A�p� , B�p�. We obtain a quite stable fit for the different val-
ues of p, with the p-independent value of the decaying ex-
ponent �c /z,

�c

z
= 1.05 ± 0.03, �35�

all the p dependence being contained in the nonuniversal
amplitudes A�p� , B�p� �see the inset in Fig. 3�. As shown in
Fig. 3, the curves for different values of p �and different tw�
in Fig. 2 collapse on a master curve when we plot
tw
�1+��/zCttw

/ �f�t− tw�g�t / tw��, with g�x�=A�p��1+B�p�x−b�, as
a function of t / tw. This fact supports universality of the long-
time nonequilibrium relaxation in this model. Our value for
the exponent �c /z, together with z=2.6±0.1, gives for the
initial slip exponent �=0.1±0.035, which is in rather good
agreement with the two-loop RG result 2loops� =0.0868 �23�.
Alternatively, this exponent could be measured by studying
the initial stage of the relaxational dynamics starting from a
nonzero magnetization: this is left for future investigations
�34�.

FIG. 1. Log-log plot of autocorrelation function Cttw
vs t− tw.

Inset: Scaling plot of Cttw
as a function of t / tw. Here, the system is

initially prepared in a random initial configuration with zero
magnetization.

FIG. 2. tw
�1+��/zCttw

/ f�t− tw� as a function of t / tw for different p
=0.5, 0.6, 0.65, and 0.8. Waiting times tw corresponding to p=0.5,
0.6, 0.65 are 26 ,… ,210 whereas for p=0.8, tw=24,… ,28. f�x� is
defined in the text. Inset : Nonuniversal amplitude D�p� as a func-
tion of p. Here, the system is initially prepared in a random initial
configuration with zero magnetization.
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Here also, one obtains that the corrections to scaling in
Eq. �34� vanish for p=0.8. We notice that this result is in
apparent contradiction with the previous analysis of the non-
equilibrium relaxation in this model performed in Ref. �21�,
where the focus was on the nonconnected susceptibility, a
one-time quantity, which instead claimed a “perfect Hamil-
tonian” for p�0.63. However, the statistical precision of our
data does not allow us to make a strong statement about this
point, which certainly deserves further investigation.

So far, we have focused on the relaxational dynamics oc-
curring after a quench from a completely disordered initial
condition, with zero initial magnetization m0=0, to Tc�p�.
But it is also interesting to study how these aging properties
depend on the initial conditions �35–37�. We have therefore
performed numerical simulations where the system is ini-
tially prepared in a completely ordered state,

Si�t = 0� = + 1, ∀ occupied site i �36�

such that the initial magnetization is m0=1. The system is
then quenched at t=0 to Tc�p� and evolves according to the
same aforementioned dynamical rules. We also compute the
autocorrelation function C�t , tw� as defined in Eq. �31�. The
result of this computation for p=0.65 is shown in Fig. 4,
where we plot C�t , tw� as a function of t− tw, for different
tw=25 ,27 ,29. Here also, one observes a clear dependence on
the waiting time tw, which indicates that the system is aging.
Notice, however, that, at variance with the previous situation
�Fig. 1�, the correlation for a given t− tw decreases as tw
increases. In addition, at variance with the previous case

m0=0, the behaviors of the connected C̃�t , tw� �32� and the
nonconnected C�t , tw� correlations are qualitatively different:
this is shown in the inset of Fig. 4, when one observes that

C̃�t , tw� decays indeed much faster �38�. This property could
be relevant for the computation of the FDR in this situation.
The quantitative analysis of the correlation function C�t , tw�
is shown in Fig. 5. Indeed, the curves for different tw can be
plotted on a master curve if one plots, for different
tw , tw

�1+��/zCttw
/ f�t− tw� as a function of t / tw, which suggests

that also in that case the correlation function can be written

under the scaling form as in Eq. �33� with F̃p�x�= G̃p�x�.
However, as illustrated in Fig. 5, the behavior of C�t , tw� is
strongly affected by the initial condition, the decay being
much faster when the system is initially in a random configu-
ration with m0=0. More precisely, as suggested in Fig. 5, our
data for m0=1 are compatible with the following scaling
form:

Cttw
�

1

�t − tw��1+��/z�1 −
D�p�

�t − tw�b�� t

tw
��1+��/2z

� t−�/�z, t � tw, �37�

where � , � are the standard equilibrium critical exponents
and where we have used the hyperscaling relation � /�= �d
−2+�� /2. Thus, although we cannot show it analytically for
the present problem, we believe that in that case of a fully
ordered initial condition �m0=1�, although the system dis-
plays aging, the exponent �c is completely determined by the
equilibrium exponents,

FIG. 3. Universality of Cttw
for p=0.6,0.65,0.8. The function

g�x� is defined in the text. Inset: Nonuniversal amplitudes
A�p� ,B�p� as functions of concentration p. Here, the system is ini-
tially prepared in a random initial configuration with zero
magnetization.

FIG. 4. Log-log plot of the correlation C�t , tw� as a function of
t− tw for p=0.65. Inset: Log-log plot of the connected correlation

C̃�t− tw� as a function of t− tw. In the inset, we use the same sym-
bols as in the main figure. Here m0=1.

FIG. 5. tw
�1+��/zCttw

/ f�t− tw� as a function of t / tw for p=0.65 and
the two different initial conditions considered here, m0=0 and m0

=1. f�x� is defined in the text. The straight line is a guide line for
the eyes.
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�c =
�

�
. �38�

This relation �38� can be understood by considering C�t ,0�.
Indeed, for this particular initial condition �36�, one has
C�t ,0�=M�t�, where M�t� is the global magnetization at time
t. Therefore, at large time, from the standard scaling argu-
ment C�t ,0�� t−�/�z, which thus gives the relation �38�. No-
tice that this relation �38� is also found in the context of pure
critical point �36,37�.

To sum up, we have performed a rather detailed analysis
of the relaxational dynamics up to one loop of the randomly
diluted Ising model in dimension d=4−�. The computation
of the correlation function Cttw

q , including its associated scal-
ing function, allows us to show that the fluctuation dissipa-
tion ratio reaches, in the large time separation limit, a non-
trivial value X�, independently of small wave vector q.
Although, due to the broad relaxation time spectrum induced
by the disorder, the standard argument of Ref. �7� cannot be
applied here, we have performed an explicit computation in
real space which shows explicitly that the limiting FDR as-
sociated with the total magnetization, on the one hand, and
the local one, on the other hand, do coincide. And in this
respect, it would be interesting to further investigate the FDR
associated with other observables, like the energy, for in-

stance �10,11�. These properties could also be tested in nu-
merical simulations.

In addition, we have computed numerically, in d=3, the
autocorrelation function. It is characterized by a scaling form
fully compatible with our one-loop RG calculation in real
space. We have, however, shown that this two times quantity
is strongly affected by corrections to scaling, which remain
to be understood more deeply from an analytical point of
view. By taking them properly into account, our data suggest
a universal, i.e., p-independent autocorrelation exponent �c,
which provides an “indirect” measurement of the initial slip
exponent �, which is in reasonably good agreement with the
two-loop RG prediction. Finally, we have shown that the
critical dynamics following a quench from a completely or-
dered state �m0=1� displays also aging, but with a quantita-
tively different behavior, the decaying exponent �c being in
that case completely determined by the equilibrium expo-
nents.

ACKNOWLEDGMENTS

G.S. acknowledges the financial support provided through
the European Community’s Human Potential Program under
Contracts No. HPRN-CT-2002-00307 and No. DYGLAGE-
MEM, and R.P.’s work was supported by the DFG �SFB277�.

�1� A. J Bray, Adv. Phys. 43, 357 �1994�.
�2� L. F. Cugliandolo, J. Kurchan, and G. Parisi, J. Phys. I 4, 1641

�1994�.
�3� C. Godrèche and J. M. Luck, J. Phys.: Condens. Matter 14,

1589 �2002�.
�4� For a recent review, see P. Calabrese and A. Gambassi, e-print

cond-mat/0410357.
�5� L. F. Cugliandolo, Dynamics of Glassy Systems in Slow Relax-

ation and Nonequilibrium Dynamics in Condensed Matter, ed-
ited by J. L. Barrat et al. �Springer-Verlag, Berlin, 2002�.

�6� C. Godrèche and J. M. Luck, J. Phys. A 33, 9141 �2000�.
�7� P. Calabrese and A. Gambassi, Phys. Rev. E 65, 066120

�2002�; 66, 066101 �2002�.
�8� P. Calabrese and A. Gambassi, Phys. Rev. E 67, 036111

�2003�.
�9� L. F. Cugliandolo et al., Phys. Rev. E 55, 3898 �1997�.

�10� P. Calabrese and A. Gambassi, J. Stat. Mech.: Theory Exp.
P07013 �2004�.

�11� P. Mayer et al., Phys. Rev. E 68, 016116 �2003�.
�12� H.-O. Heuer, J. Phys. A 26, L333 �1993�; 26, L341 �1993�.
�13� D. P. Belanger et al., J. Phys. �Paris�, Colloq. 49, C8-1229

�1988�.
�14� A. B. Harris, J. Phys. C 7, 1671 �1974�.
�15� For a review, see R. Folk et al., Phys. Usp. 46, 169 �2003�.
�16� H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A.

Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Rev. B
58, 2740 �1998� and references therein.

�17� The summability of the perturbative expansions in diluted sys-

tems is a complex issue. For the present problem, it is dis-
cussed in �15�.

�18� G. Grinstein et al., Phys. Rev. B 15, 258 �1977�.
�19� H. K. Janssen et al., J. Phys. A 28, 6073 �1995�.
�20� V. V. Prudnikov et al., JETP 87, 527 �1998�.
�21� G. Parisi et al., Phys. Rev. E 60, 5198 �1999�.
�22� J. G. Kissner, Phys. Rev. B 46, 2676 �1992�.
�23� K. Oerding and H. K. Janssen, J. Phys. A 28, 4271 �1995�.
�24� A. A. Fedorenko, Phys. Rev. B 69, 134301 �2004�.
�25� P. Calabrese and A. Gambassi, Phys. Rev. B 66, 212407

�2002�.
�26� H. K. Jansen et al., Z. Phys. B: Condens. Matter 73, 539

�1989�.
�27� G. Schehr and P. Le Doussal, Phys. Rev. E 68, 046101 �2003�.
�28� P. Chauve and P. Le Doussal, Phys. Rev. E 64, 051102 �2001�.
�29� S. Scheidl and Y. Dincer, e-print cond-mat/0006048.
�30� Up to a nonuniversal scale q→�q.
�31� M. Henkel et al., Phys. Rev. Lett. 87, 265701 �2001�.
�32� G. Schehr and P. Le Doussal, Phys. Rev. Lett. 93, 217201

�2004�.
�33� J. Kisker et al., Phys. Rev. B 53, 6418 �1996�.
�34� R. Paul and G. Schehr �unpublished�.
�35� A. J. Bray et al., Phys. Rev. B 43, 3699 �1991�; A. Picone and

M. Henkel, J. Phys. A 35, 5575 �2002�.
�36� L. Berthier et al., J. Phys. A 34, 1805 �2001�.
�37� For a review, see B. Zheng, Int. J. Mod. Phys. B 12, 1419

�1998�.
�38� Note also that the large time behavior of C̃�t , tw� also depends

on m0.

UNIVERSAL AGING PROPERTIES AT A DISORDERED … PHYSICAL REVIEW E 72, 016105 �2005�

016105-7


